Designing of dual inhibitors for GSK-3β and CDK5: Virtual screening and in vitro biological activities study
نویسندگان
چکیده
Alzheimer's disease is a multifactorial neurodegenerative disorder with many drug targets contributing to its etiology. Despite the devastating effects of this disease, therapeutic methods for treating Alzheimer's disease remain limited. The multifactorial nature of Alzheimer's disease strongly supports a multi-target rationale as a drug design strategy. Glycogen synthase kinase-3 beta and cyclin-dependent kinase 5 have been identified as being involved in the pathological hyperphosphorylation of tau proteins, which leads to the formation of neurofibrillary tangles and causes Alzheimer's disease. In this study, using a molecular docking method to screen a virtual library, we discovered molecules that can simultaneously inhibit Glycogen synthase kinase-3 beta and cyclin-dependent kinase 5 as lead compounds for the treatment of Alzheimer's disease. The docking results revealed the key residues in the substrate binding sites of both Glycogen synthase kinase-3 beta and cyclin-dependent kinase 5. A receiver operating characteristic curve indicated that the docking model consistently and selectively scored the majority of active compounds above decoys. The pre-treatment of cells with screened compounds protected them against Aβ25-35- induced cell death by up to 80%. Collectively, these findings suggest that some compounds have potential to be promising multifunctional agents for Alzheimer's disease treatment.
منابع مشابه
Suppression of Extensive Neurofilament Phosphorylation Rescues α-Internexin/Peripherin-Overexpressing PC12 Cells from Neuronal Cell Death
Intermediate filament (IF) overproduction induces abnormal accumulation of neuronal IF, which is a pathological indicator of some neurodegenerative disorders. In our study, α-Internexin- and peripherin-overexpressing PC12 cells (pINT-EGFP and pEGFP-peripherin) were used as models to study neuropathological pathways responsible for neurodegenerative diseases. Microarray data revealed that Cdk5-r...
متن کاملExpression of Gsk-3β And β-Catenin Proteins in the PMSG Stimulated Rat Ovary
Purpose: The ovary is an example of a developing tissue in which developmental prosses occur throughout reproductive life. We investigate the expression of GSK-3β and β-catenin- Wnt pathway molecules- in the rat ovary during follicular development. Materials and Methods: To induce follicular growth and development, 23 days old immature female rats were injected with 10 IU of PMSG. Forty and for...
متن کاملThe neuroprotective effect of lithium in cannabinoid dependence is mediated through modulation of cyclic AMP, ERK1/2 and GSK-3β phosphorylation in cerebellar granular neurons of rat
Lithium (Li), a glycogen synthase kinase-3β (GSK-3β) inhibitor, has used to attenuate thecannabinoid-induced dependence/withdrawal signs, but molecular mechanisms related to this areunclear. Recent studies indicate the involvement of upstream extracellular signal kinase1/2 (ERK1/2)and downstream GSK-3β pathways in the development of cannabinoid-induced dependence. Thisis mediated through cannab...
متن کاملThe neuroprotective effect of lithium in cannabinoid dependence is mediated through modulation of cyclic AMP, ERK1/2 and GSK-3β phosphorylation in cerebellar granular neurons of rat
Lithium (Li), a glycogen synthase kinase-3β (GSK-3β) inhibitor, has used to attenuate thecannabinoid-induced dependence/withdrawal signs, but molecular mechanisms related to this areunclear. Recent studies indicate the involvement of upstream extracellular signal kinase1/2 (ERK1/2)and downstream GSK-3β pathways in the development of cannabinoid-induced dependence. Thisis mediated through cannab...
متن کاملMelatonin Mitigates Kainic Acid-Induced Neuronal Tau Hyperphosphorylation and Memory Deficits through Alleviating ER Stress
Kainic acid (KA) exposure causes neuronal degeneration featured by Alzheimer-like tau hyperphosphorylation and memory deficits. Melatonin (Mel) is known to protect hippocampal neurons against KA-induced damage. However, the underlying mechanisms remain elusive. In the current study, we investigated the protective effect of melatonin on KA-induced tau hyperphosphorylation by focusing on endoplas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017